চলন গতিতে রৈখিক ত্বরণের সাথে যেমন বল সংশ্লিষ্ট ঘূর্ণন গতিতে তেমনি কৌণিক ত্বরণের সাথে সংশ্লিষ্ট রাশি হলো টর্ক (torque) বা বলের ভ্রামক (moment of force)।
কৌণিক ত্বরণের সাথে সংশ্লিষ্ট রাশি যে বল নয়, তা আমরা আমাদের দৈনন্দিন অভিজ্ঞতা থেকেই দেখতে পাই। কোনো দরজার উপর প্রযুক্ত বল বিভিন্ন কৌণিক ত্বরণ সৃষ্টি করতে পারে—এটি নির্ভর করে বল কোথায় প্রয়োগ করা হয়েছে আর কোন দিকে প্রয়োগ করা হয়েছে তার উপর। দরজার কবজার উপর সরাসরি প্রযুক্ত বল কোনো কৌণিক ত্বরণই সৃষ্টি করে না, আবার সেই একই মানের বল যদি দরজার বাইরের প্রাপ্তে দরজার সাথে লম্বভাবে প্রয়োগ করা হয়, তাহলে সর্বোচ্চ কৌণিক ত্বরণ সৃষ্টি করে থাকে। সুতরাং দরজার এ ঘূর্ণন প্রক্রিয়া নির্ভর করে প্রযুক্ত বলের মান, ঘূর্ণন অক্ষ থেকে বলের প্রয়োগ বিন্দুর দূরত্ব আর কত কোণে বল প্রয়োগ করা হয়েছে তার উপর। এ সকল রাশি মিলিয়ে ঘূর্ণন গতির ক্ষেত্রে আমরা যে রাশির সংজ্ঞা দেই তাই হচ্ছে টর্ক। টর্ক হচ্ছে একটি বলের ঘূর্ণন সৃষ্টি করার সামর্থ্যের একটি পরিমাপ।
ঘূর্ণন কেন্দ্রের সাপেক্ষে কোনো কণার ব্যাসার্ধ ভেক্টর বা অবস্থান ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> এবং ঐ কণার উপর প্রযুক্ত বল হলে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> ঐ কেন্দ্রের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামক হচ্ছে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>π</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> × <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> (4.34)
ঘূর্ণন কেন্দ্র থেকে । দূরত্বে কোনো কণার উপর F বল প্রযুক্ত হলে ঐ কেন্দ্রের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামকের মান π হলো
বা,
এখানে হচ্ছে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> এর অন্তর্ভুক্ত কোণ।
কিন্তু r sin হচ্ছে ঘূর্ণন কেন্দ্র থেকে বলের ক্রিয়ারেখার লম্ব দূরত্ব (চিত্র : ৪.১৯)। সুতরাং কোনো কণার উপর প্রযুক্ত বল এবং ঘূর্ণন কেন্দ্ৰ থেকে বলের ক্রিয়ারেখার লম্ব দূরত্বের গুণফলই হচ্ছে ঐ কেন্দ্রের সাপেক্ষে টর্ক বা বলের ভ্রামকের মান।
টর্ক একটি ভেক্টর রাশি। এর দিক <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> x <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> এর দিকে। একটি ডানহাতি স্কুকে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> এর সমতলে লম্বভাবে স্থাপন করে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> থেকে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> এর দিকে ক্ষুদ্রতর কোণে ঘুরালে যে দিকে অগ্রসর হয় সেদিকে।
টর্কের মাত্রা হচ্ছে বল × দূরত্বের মাত্রা অর্থাৎ ML2T-2 এবং একক হচ্ছে Nm।
কোনো দৃঢ় বস্তুর টর্ক 20 N m বলতে বোঝায়, যে পরিমাণ টর্ক 1 kg m2 জড়তার ভ্রামক বিশিষ্ট বস্তুতে 20 rad s-1 কৌণিক ত্বরণ সৃষ্টি করে ।
বি: দ্র: কোনো অক্ষের সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর ক্ষেত্রে টর্ক হয় ঐ ঘূর্ণন অক্ষের সাপেক্ষে।
ধরা যাক, কোনো একটি দৃঢ় বস্তুর উপর F বল প্রয়োগ করায় বস্তুটি কোনো একটি অক্ষের সাপেক্ষে সমকৌণিক ত্বরণে ঘূর্ণায়মান। উক্ত বস্তুর যেকোনো একটি কণার ভর m1, ঘূর্ণন অক্ষ থেকে কণাটির লম্ব দূরত্ব r1 এবং কণাটির ত্বরণ হলে-
ঘূর্ণন অক্ষের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামক = Fr1
= m1 a1 r1
= m1 r12
= m1 r12
অনুরূপে ঘূর্ণন অক্ষের সাপেক্ষে m2 ভরের কণাটির উপর প্রযুক্ত টর্ক = m2r22 । এভাবে প্রতিটি বস্তুকণার উপর প্রযুক্ত টর্ক বের করে তাদের সমষ্টি নিলে সম্পূর্ণ বস্তুটির বলের ভ্রামক বা টর্ক π পাওয়া যাবে।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi><mo>=</mo><mi>α</mi><mo> </mo><msub><mi>m</mi><mn>1</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>1</mn></msub><mo>+</mo><mi>α</mi><mo> </mo><msub><mi>m</mi><mn>2</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>2</mn></msub><mo>+</mo><mi>α</mi><mo> </mo><msub><mi>m</mi><mn>3</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>3</mn></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><mi>α</mi><mo> </mo><mo>(</mo><msub><mi>m</mi><mn>1</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>1</mn></msub><mo>+</mo><msub><mi>m</mi><mn>2</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>2</mn></msub><mo>+</mo><msub><mi>m</mi><mn>3</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>3</mn></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo><mspace linebreak="newline"/><mo>=</mo><mi>α</mi><mo> </mo><mo>∑</mo><msub><mi>m</mi><mn>1</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>1</mn></msub><mspace linebreak="newline"/><mo>=</mo><mi>α</mi><mi>I</mi><mo> </mo><mo>[</mo><mo>:</mo><mi>I</mi><mo>=</mo><mo> </mo><mo>∑</mo><msub><mi>m</mi><mn>1</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>1</mn></msub><mo>]</mo><mspace linebreak="newline"/></math>
এখানে I হলো ঘূর্ণন অক্ষের সাপেক্ষে বস্তুটির জড়তার ভ্রামক।
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi><mo>=</mo><mi>I</mi><mi>α</mi><mo>=</mo><mi>I</mi><mfrac><mrow><mi>d</mi><mi>ω</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></math>
:- টর্ক = জড়তার ভ্রামক x কৌণিক ত্বরণ
৪.২০ চিত্রে একটি দৃঢ় বস্তুর A ও B বিন্দুতে দুটি সমান, সমান্তরাল ও বিপরীতমুখী বল F, F প্রয়োগ করা হলো।
এ দুটি বল মিলে একটি দ্বন্দ্ব তৈরি হয়। বলদ্বয়ের ক্রিয়া রেখার মধ্যবর্তী লম্ব দূরত্বকে দ্বন্দ্বের বাহু বলে । এখানে d দ্বন্দ্বের বাহু। যেকোনো একটি বল ও বলদ্বয়ের মধ্যবর্তী লম্ব দূরত্বের গুণফলের মানকে দ্বন্দ্বের ভ্রামক (moment of the couple) বলে।
৪.২০ চিত্রানুযায়ী দ্বন্দ্বের ভ্রামক,
C=F × AB=F × d
দ্বন্দ্বের ভ্রামককেও টর্ক বলে। এ জন্য এর একক হবে N m। যে দ্বন্দ্বের জন্য বস্তু ঘড়ির কাঁটার বিপরীত দিকে ঘুরতে চেষ্টা করে সে দ্বন্দ্বের ভ্রামককে ধনাত্মক এবং যে দ্বন্দ্বের জন্য বস্তু ঘড়ির কাঁটার দিকে ঘুরতে চেষ্টা করে সে দ্বন্দ্বের ভ্রামককে ঋণাত্মক ধরা হয়।
আরও দেখুন...